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Abstract 

Electrocardiographic Imaging (ECGI) allows 

computing the electrical activity in the epicardium by 

inverting the electrical propagation matrix, which can be 

solved by regularizing this ill-posed problem. The 

objective of this study is to evaluate the effects of noise on 

the signals in the selection of the regularization parameter 

(λ) by zero-order Tikhonov and L-curve optimization.  

Fourteen atrial fibrillation (AF) simulations were used 

for computing the ECGI with different noise levels (3, 10, 

20, 30, and 40dB). Signals of real cardiac rhythms were 

also used to compute the ECGI (3 AF, 2 atrial flutters, 3 

atrial pacing, 3 atrial sinus rhythm and 3 ventricular 

tachycardia). For simulations and patients, maximum L-

curve curvature and λ were obtained and compared.  

The maximum curvature of the L-curve, noise level and 

optimal λ correlated for AF simulations. Higher levels of 

noise resulted in smaller curvatures of the L-curve and the 

selection of higher values of λ, reducing the amplification 

of noise when computing ECGI. Real cardiac signals of AF 

presented similar results in curvature and λ as the higher 

values of noise explored in simulations (3dB, λ > 10-6, 

curvature < 1). The noise of the signal proportionally 

affects to the reconstruction of ECGI. The given results 

show a methodology to obtain trustable ECGI maps based 

on the shape of the L-curve optimization.  

 

 

1. Introduction 

Electrocardiographic Imaging (ECGI) allows 

estimating the epicardial activity by using the information 

of Body Surface Potential Mapping (BSPM) recordings 

and information relative to the geometry of the torso and 

the heart. In previous studies, ECGI has shown to estimate 

reliable epicardial potentials when compared with 

intracardiac mapping data [1]. Nevertheless, epicardial 

potential estimation based on BSPM data remains an ill-

posed problem that strongly depends on different sources 

of noise (i.e., signals artifacts, geometry, regularization 

methodology). During the last decades, multiple 

approaches have been used for obtaining the optimal ECGI 

reconstruction, with zero-order Tikhonov and L-curve 

optimization one of the most used approaches by the ECGI 

community [2]. This method works especially well for 

noisy signals such as atrial fibrillation (AF), because it 

allows minimizing the effects of the noise by providing an 

smooth solution when regularization parameters (λ) are 

explored in the adequate range [3]. However, this method 

presents some limitations under noise conditions that do 

influence the selection of the optimal solution [4], since the 

shape of the L-curve is affected. The objective of this study 

is to evaluate the impact of different levels of noise on the 

L-Curve shape and regularization parameter selection by 

using simulated electrograms and real ECGI signals for 

different cardiac rhythms. 

 

2. Material and Methods 

2.1. Simulations 

 
Fourteen atrial fibrillation simulations of 10 seconds of 

duration were created using the same cardiac geometry and 

different AF episodes. A realistic 3D model of the atrial 

anatomy composed by 284.578 nodes and 1.353.783 

tetrahedrons was used for creating the simulations [5]. 

Variation of currents were introduced in Ik,ACH, IK1, INa and 

ICaL to simulate electrical remodeling and allow the 

maintenance of fibrillation. Fibrotic tissue was modeled by 

disconnecting a percentage of nodes between 20% and 

60% and scar tissue by disconnecting 100% of nodes in the 

scar region. The system of differential equations was 

solved by using Runge–Kutta integration based on a 

graphic processors unit (NVIDIA Tesla C2075 6G), [5]. 

AF was induced by implementing an S1 S2 protocol, with 

the S2 stimulus applied at different locations in the atria, 

thus producing different AF patterns.  

A torso mesh geometry of 771 nodes was used for all 

simulations. The forward problem was then computed to 
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obtain the body surface potentials by multiplying the 

transfer matrix and the computed electrograms. Noise was 

then added at 5 different levels (3, 10, 20, 30, and 40 dB 

signal-to-noise ratios). Baseline was then subtracted by a 1 

Hz high-pass filter followed by a low pass filter of 40 Hz.  

 

2.2. Patient Data 

 
Signals from 14 patients with different cardiac rhythms 

(3 AF, 2 atrial flutters (AFl), 3 atrial pacing (AP), 3 atrial 

sinus rhythm (SR) and 3 ventricular tachycardia (VT) were 

registered using Body Surface Potential Mapping with 64 

electrodes. Torso geometries and lead positioning of each 

patient were reconstructed by photogrammetry and cardiac 

geometry was reconstructed using MRI/CT scans. BSPM 

signals were band-pass filtered between 1 and 40 Hz to 

improve the signal-to-noise ratio. AF signals of 1 minute 

length were selected and QRS was cancelled using a PCA 

approach [6]. For non-fibrillating rhythms a single beat 

was manually selected for the ECGI calculation. For 

illustrating the inverse reconstruction, local activation 

times of an example of SR and VT were computed. 

Furthermore, phase singularities of an example of AF were 

computed as described in [7].   

 

 

2.3. Inverse Problem Computation 

 
For the inverse problem calculation of simulations and 

real data, zero-order Tikhonov regularization was used 

together with the L-curve optimization for selecting the 

regularization parameter. This regularization allows 

estimating the epicardial potentials by minimizing 

equation 1: 

 

||𝐴𝑥 − 𝑏||
2

2
+ 𝜆||𝐿𝑥||

2

2
                       (1) 

 

where the first term corresponds to the norm of the 

solution, x are the epicardial potentials, b the surface 

potentials and A the transfer matrix, which was computed 

by using the Boundary Element Method. The second term 

of the equation is the residual norm of the solution 

multiplied by the identity matrix L. This second term is 

multiplied by the regularization parameter λ that is chosen 

to minimize the equation by finding the maximum 

curvature of the two terms of equation 1 [4].  

Values of λ and maximum curvatures of the 

simulations were extracted and adjusted to a polynomial to 

relate the selection of λ based on the curvature of the L-

curve. Furthermore, confidence intervals of the adjusted

equation based on the possible values of curvature were 

established with a confidence level of 0.05. 

 

 

3. Results 

3.1. ECGI regularization in AF simulations 
 

In Fig. 1, results of the regularization parameters and 

maximum curvatures of L-curve for AF simulations are 

presented for the different added noise levels. As it can be 

observed, there is an inverse relationship between noise 

level and optimal regularization parameter (λ = 10-10 for 40 

dB SNR vs. λ = 10-5 for 3dB SNR). The noise level is also 

inversely related with the maximum curvature at the corner 

of the L curve. The observed relationship allows defining 

an expected regularization parameter, described in 

equation 2. 

 

𝜆 = 10−1.83∗𝑚𝑎𝑥.  𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒−4.01                 (2) 

 

 
Figure 1. Curvature and regularization parameter λ 

resultant from the inverse problem calculation of atrial 

fibrillation simulations with different levels of noise 

added. Adjusted equation 2 is represented (black line) with 

confidence intervals (α = 0.05, red dashed line). 

 

In Fig. 2, an example of the L-curves and their curvature 

for each of the explored λ values is presented. Scenarios 

with high noise levels are bounded to higher residual 

errors, which results in a more vertical-shape L-curve and 

low curvatures at the corner (Fig. 2B), whereas scenarios 

with low SNR reach smaller residual errors and steeper 

corners of the L-curve. 
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Figure 2. Examples of L-curves (A) and their curvature (B) 

of an atrial fibrillation simulation for different noise levels.  

 

3.2.  ECGI regularization in patient data 
 

Regularization parameters and curvatures of signals 

from patients were extracted and compared with the 

simulation values shown in Fig. 3. Results showed that for 

real signals, maximum curvature and λ have similar 

relationship as observed in simulations, with higher values 

of curvature related to smaller values of λ. Furthermore, 

signals expected to be nosier as AF signals (blue crosses in 

Fig. 3) presented lower values of curvature and higher 

values of λ, (λ > 10-6), with the subsequent smoother 

solutions that will attenuate the noise present in the data. 

Signals of other rhythms expected to present higher signal-

to-noise ratios (i.e., SR or VT) do reach larger curvatures 

and lower λ values. Besides, most of the observed λ and 

curvatures, fit in the estimated intervals of confidence, 

validating the relationship also in real patients.  

 

 
Figure 3. Curvature and regularization parameter from the 

inverse problem calculation of atrial fibrillation 

simulations and real signals of atrial fibrillation, atrial 

flutter, atrial pacing, sinus rhythm and ventricular 

tachycardia. 

 

In Fig 4. three sample cases are depicted. During sinus 

rhythm and VT activation is quite homogeneous. In sinus 

rhythm (Fig. 4.A) the activation starts from the sinoatrial 

node, whereas activation times in VT showed a reentrant 

activation in the right ventricle (purple region of Fig, 4B). 

During AF, multiple reentrant sites are observed, as 

illustrated in the rotor histogram in Fig. 4C. In addition, an 

example of L-curves and curvatures of real ECGI signals 

is presented in Figure 4. BSPM signals were normalized in 

order to compare the shapes and curvatures for the 

different cardiac rhythms. As it can be observed in Fig 4D, 

AF signals presented larger residual errors, more vertical 

L-curves and smaller curvatures at the corner of the L-

curve (Fig. 4E) than SR, and VT signals. 

 

 
 

Figure 4. Representation of the epicardial maps activation 

times of the examples of sinus rhythm (A) and ventricular 

tachycardia (B) and rotor histogram of an atrial fibrillation 

signal (C). L-curves (D) and their curvature (E) of the 

represented signals from patients of SR, VT, and AF. 

 

4. Discussion 

In the present study, a relationship between the noise 

level present in BSPM signals and both the curvature at the 

corner of the L-curve and the optimal λ selection has been 

evaluated. We have shown that the noise level is inversely 

related with the curvature at the corner of the L-curve. 

From our results we can define the range of λ values that 

should be acceptable based on the curvature at the corner 
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of L-curve: λ values below our defined ranges should be 

avoided because they will result in solutions without 

sufficient noise attenuation [3][8].  

Curvature and λ values of simulations and real cardiac 

signals overlapped with the observed values on 

simulations. L-curves obtained from real patient BSPM 

signals presented curvatures within noise levels from 3 to 

20 dB, which is consistent with noise levels in real 

recorded signals. In fact our results suggest that our signals 

may present noise levels above 30 dB in all cases and, 

therefore, λ values under 10-7 should not be considered in 

the parameter space search, which, in turn, is consistent 

with our prior observations on AF signals [3].  On the other 

hand, we were expecting to find a clear separation between 

AF and the other rhythms, with a clear separation between 

AF signals -assumed to be similar to high noise level 

scenarios- and non-AF signals -assumed to be similar to 

lower noise levels- but we didn’t observe separated 

clusters.  AF signals, however, were found to present 

consistently lower curvatures at the corner of the L-curve 

and larger λ values were selected. This observation could 

be explained by the presence of other sources of noise, 

such as geometrical errors, that may have a large impact on 

ECGI reconstruction on top of the electrical noise of the 

recorded signals.  

 

5. Conclusion 

The noise level present on BSPM signals do have an 

impact on the reconstruction of ECGI signals when 

applying Tikhonov regularization and L-Curve 

optimization methods. The noise level is directly related 

with the curvature at the corner of the L-curve and the 

selected regularization parameter. Results show that the 

noise of the signal can be estimated based on the Inverse 

Problem resolution. Finally, our results allow us to propose 

a confidence range for the regularization parameter search 

based on the level of curvature observed in the L-curve and 

therefore obtain trustable solutions of ECGI maps for non-

invasive physiological interpretation of epicardial activity.  
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